Structured low-rank matrix completion for forecasting in time series analysis
نویسندگان
چکیده
In this paper we consider the low-rank matrix completion problem with specific application to forecasting in time series analysis. Briefly, the low-rank matrix completion problem is the problem of imputing missing values of a matrix under a rank constraint. We consider a matrix completion problem for Hankel matrices and a convex relaxation based on the nuclear norm. Based on new theoretical results and a number of numerical and real examples, we investigate the cases when the proposed approach can work. Our results highlight the importance of choosing a proper weighting scheme for the known observations.
منابع مشابه
Residual analysis using Fourier series transform in Fuzzy time series model
In this paper, we propose a new residual analysis method using Fourier series transform into fuzzy time series model for improving the forecasting performance. This hybrid model takes advantage of the high predictable power of fuzzy time series model and Fourier series transform to fit the estimated residuals into frequency spectra, select the low-frequency terms, filter out high-frequency term...
متن کاملDecomposing multivariate polynomials with structured low-rank matrix completion
We are focused on numerical methods for decomposing a multivariate polynomial as a sum of univariate polynomials in linear forms. The main tool is the recent result on correspondence between the Waring rank of a homogeneous polynomial and the rank of a partially known quasi-Hankel matrix constructed from the coefficients of the polynomial. Based on this correspondence, we show that the original...
متن کاملLow-Rank and Sparse Modeling of High-dimensional Vector Autoregressions
Network modeling of high-dimensional time series in presence of unobserved latent variables is an important problem in macroeconomics and finance. In macroeconomic policy making and forecasting, it is often impossible to observe and incorporate all the relevant series in the analysis. Failure to include these variables often results in spurious connectivity among the observed time series in str...
متن کاملGraph Matrix Completion in Presence of Outliers
Matrix completion problem has gathered a lot of attention in recent years. In the matrix completion problem, the goal is to recover a low-rank matrix from a subset of its entries. The graph matrix completion was introduced based on the fact that the relation between rows (or columns) of a matrix can be modeled as a graph structure. The graph matrix completion problem is formulated by adding the...
متن کاملSpectral Compressed Sensing via Structured Matrix Completion
The paper studies the problem of recovering a spectrally sparse object from a small number of time domain samples. Specifically, the object of interest with ambient dimension n is assumed to be a mixture of r complex multi-dimensional sinusoids, while the underlying frequencies can assume any value in the unit disk. Conventional compressed sensing paradigms suffer from the basis mismatch issue ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1802.08242 شماره
صفحات -
تاریخ انتشار 2018